Approximation by bounded analytic functions: Uniform convergence as implied by mean convergence

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation by Bounded Analytic Functions: Uniform Convergence as Implied by Mean Convergence^) By

In three recent notes [1], [2], [3] I have discussed uniform convergence by polynomials (in the complex variable) to a given function as a consequence of convergence in the mean of those polynomials to the given function, and also convergence in the mean of one order as a consequence of convergence in the mean of a lower order. The present note contains analogs of those results, but now for app...

متن کامل

On The Mean Convergence of Biharmonic Functions

Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...

متن کامل

Approximation of analytic functions : a method of enhanced convergence

We present a method of enhanced convergence for the approximation of analytic functions. This method introduces conformal transformations in the approximation problems in order to help extract the values of a given analytic function from its Taylor expansion. We show that conformal transformations can extend the radius of convergence of a power series far into infinity, enhance substantially it...

متن کامل

Best Approximation in the Mean by Analytic and Harmonic Functions

For n ≥ 2, let Bn denote the unit ball in R, and for p ≥ 1 let L denote the Banach space of p-summable functions on Bn. Let L p h(Bn) denote the subspace of harmonic functions on Bn that are p-summable. When n = 2, we often write D instead of B2, and we let A denote the Bergman space of analytic functions in L. Let ω be a function in L. We are interested in finding the best approximation to ω i...

متن کامل

on the mean convergence of biharmonic functions

let denote the unit circle in the complex plane. given a function , one uses t usual (harmonic) poisson kernel for the unit disk to define the poisson integral of , namely . here we consider the biharmonic poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . we then consider the dilations for and . the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1968

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1968-0220945-1